COVID-19-IMPFUNG BEI PATIENT*INNEN
MIT MULTIPLER SKLEROSE UNTER
MONOKLONALER ANTIKÖRPERTHERAPIE
Literatur
Achiron A, Mandel M, Dreyer-Alster S, et al. Humoral immune response in multiple sclerosis patients following PfizerBNT162b2 COVID19 vaccination: up to 6 months cross-sectional study. J Neuroimmunol 2021;361:577746
Achiron A, Mandel M, Dreyer-Alster S, et al. In-depth characterization of long-term humoral and cellular immune responses to COVID-19m-RNA vaccination in multiple sclerosis patients treated with teriflunomide or alemtuzumab. Mult Scler Relat Disord 2023;72:104616
Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med 2020;26(4):450–2
Apostolidis SA, Kakara M, Painter MM, et al. Cellular and humoral immune responses following SARS-CoV-2mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat Med 2021;27(11):1990–2001
Bar-Or A, Calkwood JC, Chognot C, et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: the VELOCE study. Neurology 2020;95(14):e1999-e2008
Bar-Or A, O‘Brien SM, Sweeney ML, et al. Clinical perspectives on the molecular and pharmacological attributes of anti-CD20 therapies for multiple sclerosis. CNS Drugs 2021;35(9):98-97
Bar-Or A, Wiendl H, Montalban X, et al. Rapid and sustained B-cell depletion with subcutaneous ofatumumab in relapsing multiple sclerosis: APLIOS, a randomized phase-2 study. Mult Scler 2022;28(6):910–24
Barzegar M, Houshi S, Sadeghi E, et al. Association of disease-modifying therapies with COVID-19 susceptibility and severity in patients with multiple sclerosis: a systematic review and network meta-analysis. Mult Scler Int 2022;2022:9388813
Bigaud M, Anthony D, Lutzenburg P, et al. Comparative pharmacology of ofatumumab versus ocrelizumab in humanised-CD20 transgenic mice. ECTRIMS, Amsterdam, 2022.
Bock H, Juretzek T, Handreka R, et al. Humoral and cellular immune responses to SARS-CoV-2 vaccination in people with multiple sclerosis and NMOSD patients receiving immunomodulatory treatments. Mult Scler Relat Disord 2022;59:103554
Brill L, Rechtman A, Zveik O, et al. Humoral and t-cell response to SARS-CoV-2 vaccination in patients with multiple sclerosis treated with ocrelizumab. JAMA Neurol 2021;78(12):1510–4
Capuano R, Donnarumma G, Bisecco A, et al. Humoral response to SARS-CoV-2mRNA vaccine in patients with multiple sclerosis treated with natalizumab. Ther Adv Neurol Disord 2021;14:17562864211038111
Chia WN, Zhu F, Ong SWX, et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet Microbe 2021;2(6):e240-e9
Cotchett KR, Dittel BN und Obeidat AZ. Comparison of the efficacy and safety of anti-CD20 b cells depleting drugs in multiple sclerosis. Mult Scler Relat Disord 2021;49:102787
Cross AH, Delgado S, Habek M, et al. COVID-19 outcomes and vaccination in people with relapsing multiple sclerosis treated with ofatumumab. Neurol Ther 2022;11(2):741–58
Diamond MS und Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 2022;23(2):165–76
DMSG. Update der Empfehlungen für Multiple-Sklerose-Erkrankte inklusive Update der Empfehlungen zur Corona-Schutzimpfung 2022. https://www.dmsg.de/corona-virus-und-ms/multiple-sklerose-und-corona-virus-update-der-empfehlungen-des-dmsg-bundesverbandes. Abgerufen am 10.11.2022
Edwards DK, Jasny E, Yoon H, et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med 2017;15(1):1
Freedman MS, Kaplan JM und Markovic-Plese S. Insights into the mechanisms of the therapeutic efficacy of alemtuzumab in multiple sclerosis. J Clin Cell Immunol 2013;4(4)
Funk CD, Laferrière C und Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front Pharmacol 2020;11:937
Furukawa K, Tjan LH, Kurahashi Y, et al. Assessment of neutralizing antibody response against SARS-CoV-2 variants after 2 to 3 doses of the BNT162b2mRNA COVID-19 vaccine. JAMA Netw Open 2022;5(5):e2210780
Gombolay GY, Dutt M und Tyor W. Immune responses to SARS-CoV-2 vaccination in multiple sclerosis: a systematic review/meta-analysis. Ann Clin Transl Neurol 2022;9(8):1321–31
Gruell H, Vanshylla K, Tober-Lau P, et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med 2022;28(3):477–80
Hou YJ, Chiba S, Halfmann P, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 2020;370(6523):1464–8
Hughes R, Whitley L, Fitovski K, et al. COVID-19 in ocrelizumab-treated people with multiple sclerosis. Mult Scler Relat Disord 2021;49:102725
Iannetta M, Landi D, Cola G, et al. B- and T-Cell responses after SARS-CoV-2 vaccination in patients with multiple sclerosis receiving disease modifying therapies: immunological patterns and clinical implications. Front Immunol 2021;12:796482
Iovino A, Olivieri N, Aruta F, et al. Alemtuzumab in COVID era. Mult Scler Relat Disord 2021;51:102908
Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022;23(1):3–20
Januel E, De Seze J, Vermersch P, et al. Post-vaccine COVID-19 in patients with multiple sclerosis or neuromyelitis optica. Mult Scler 2022;28(7):1155–9
Jeffery-Smith A, Burton AR, Lens S, et al. SARS-CoV-2-specific memory B cells can persist in the elderly who have lost detectable neutralizing antibodies. J Clin Invest 2022;132(2)
König M, Torgauten HM, Tran TT, et al. Immunogenicity and safety of a third SARS-CoV-2 vaccine dose in patients with multiple sclerosis and weak immune response after COVID-19 vaccination. JAMA Neurol 2022;79(3):307–9
Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020;182(4):812–27.e19
Levit E, Longbrake EE und Stoll SS. Seroconversion after COVID-19 vaccination for multiple sclerosis patients on high efficacy disease modifying medi - cations. Mult Scler Relat Disord 2022;60:103719
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395(10224):565–74
Madelon N, Heikkilä N, Sabater Royo I, et al. Omicron-specific cytotoxic t-cell responses after a third dose of mRNA COVID-19 vaccine among patients with multiple sclerosis treated with ocrelizumab. JAMA Neurol 2022;79(4):399–404
Murphy K und Weaver C. Janeway Immunologie 9. Auflage. Springer-Verlag, 2018
Pizzato M, Baraldi C, Boscato Sopetto G, et al. SARS-CoV-2 and the host cell: a tale of interactions. Frontiers in Virology 2022;1
Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022;602(7898):671–5
Pollard AJ und Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2021;21(2):83–100
Putzki N, Baranwal MK, Tettenborn B, et al. Effects of natalizumab on circulating B cells, T regulatory cells and natural killer cells. Eur Neurol 2010;63(5):311–7
Räuber S, Korsen M, Huntemann N, et al. Immune response to SARS-CoV-2 vaccination in relation to peripheral immune cell profiles among patients with multiple sclerosis receiving ocrelizumab. J Neurol Neurosurg Psychiatry 2022;93(9):978–85
Richter WF und Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos 2014;42(11):1881–9
RKI. Beschluss der STIKO zur 24. Aktualisierung der COVID-19-Impfempfehlung. Epid Bull 2022a;50:3–21
RKI. COVID-19-Impfempfehlung. 2022b. https://www.rki.de/SharedDocs/FAQ/COVID-Impfen/FAQ_Liste_STIKO_Empfehlungen.html. Abgerufen am 07.02.2023
RKI. Wissenschaftliche Begründung der STIKO zur Auffrischimpfung von Personen ≥12 Jahren mit einem Omikron-BA.1- oder einem Omikron-BA.4/5- adaptierten bivalenten mRNA-Impfstoff. Epid Bull 2022c;40:21–34
RKI. Implementierung der COVID-19-Impfung in die allgemeinen Empfehlungen der STIKO 2023. Epid Bull 2023;21:3–6
Rössler A, Riepler L, Bante D, et al. SARS-CoV-2 omicron variant neutralization in serum from vaccinated and convalescent persons. N Engl J Med 2022;386(7):698–700
Ruck T, Afzali AM, Lukat KF, et al. ALAIN01–Alemtuzumab in autoimmune inflammatory neurodegeneration: mechanisms of action and neuroprotective potential. BMC Neurol 2016;16:34
Ruck T, Barman S, Schulte-Mecklenbeck A, et al. Alemtuzumab-induced immune phenotype and repertoire changes: implications for secondary autoim- munity. Brain 2022;145(5):1711–25
Rudick RA und Panzara MA. Natalizumab for the treatment of relapsing multiple sclerosis. Biologics 2008;2(2):189–99
Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021;595(7868):572–7
Schiavetti I, Cordioli C, Stromillo ML, et al. Breakthrough SARS-CoV-2 infections in MS patients on disease-modifying therapies. Mult Scler 2022;28(13):2106–11
Simpson-Yap S, Pirmani A, Kalincik T, et al. Updated results of the COVID-19 in MS global data sharing initiative: anti-CD20 and other risk factors associa- ted with COVID-19 severity. Neurol Neuroimmunol Neuroinflamm 2022;9(6)
Sormani MP, De Rossi N, Schiavetti I, et al. Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis. Ann Neurol 2021;89(4):780–9
Sormani MP, Schiavetti I, Inglese M, et al. Breakthrough SARS-CoV-2 infections after COVID-19mRNA vaccination in MS patients on disease modifying therapies during the Delta and the Omicron waves in Italy. EBioMedicine 2022;80:104042
Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26(5):681–7
Torres JB, Roodselaar J, Sealey M, et al. Distribution and efficacy of ofatumumab and ocrelizumab in humanized CD20mice following subcutaneous or intravenous administration. Front Immunol 2022;13:814064
Turner JS, Kim W, Kalaidina E, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 2021;595(7867):421–5
Viola M, Sequeira J, Seiça R, et al. Subcutaneous delivery of monoclonal antibodies: How do we get there? J Control Release 2018;286:301–14
Wang CC, Prather KA, Sznitman J, et al. Airborne transmission of respiratory viruses. Science 2021;373(6558)
Wherry EJ und Barouch DH. T cell immunity to COVID-19 vaccines. Science 2022;377(6608):821–2
WHO. Tracking SARS-CoV-2 variants. 2023. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. Abgerufen am 01.02.2023
Wu X, Wang L, Shen L, et al. Response of COVID-19 vaccination in multiple sclerosis patients following disease-modifying therapies: a meta-analysis. EBioMedicine 2022;81:104102
Zhang X, Tao Y, Chopra M, et al. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol 2013;191(12):5867–74
Ziemssen T, Bopp T, Ettle B, et al. KYRIOS clinical trial: tracking the immune response to SARS-CoV-2mRNA vaccines in an open-label multicenter study in participants with relapsing multiple sclerosis treated with ofatumumab s.c. AAN Seattle, 2022a.
Ziemssen T, Groth M, Ettle B, et al. Immune response to SARS-CoV-2mRNA vaccines in an open-label multicenter study in participants with relapsing multiple sclerosis treated with ofatumumab. Vaccines (Basel) 2022b;10(12)